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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Geometrical aspects of the two-component neutrino field 
in general relativity 

J. B. GRIFFITHS and R. A. NEWING 
Department of Applied Mathematics, University College of North Wales, 
Bangor, Caerns, Wales 
hfS.  received 1st September 1970 

Abstract. Conditions for the existence of a neutrino field are expressed in 
terms of spin coefficients. I t  is shown that a neutrino-gravitational field with 
positive energy density necessarily defines a null geodesic congruence. The 
structure of the Ricci tensor is examined and shown to  be closely related to 
the twist and shear of the congruence. 

1. Introduction 
I t  is well known that combined gravitational and electromagnetic fields can be 

given a geometrical interpretation in general relativity. A completely geometrical 
theory of the two-component neutrino-gravitational field, however, has not yet been 
established. I n  our paper (Griffiths and Newing 1970 to be referred to as I) Weyl’s 
neutrino equations were expressed as equivalent tetrad equations, and these equations 
are now expressed as conditions on the spin coefficients (Newman and Penrose 1962) 
associated with the tetrad. The neutrino conditions, together with the requirement 
of a positive energy density, are shown to imply that the neutrino flux vector defines 
a null geodesic congruence, and twist-free neutrino congruences are found to be 
necessarily shear-free. The  positive energy condition is a somewhat severe 
restriction for a fermion field, but the condition defines a physically interesting 
subclass of possible neutrino fields. The eigenvectors and eigenvalues of the 
neutrino energy-momentum tensor, and hence of the Ricci tensor of the space- 
time associated with the neutrino-gravitational field, are investigated, and the general 
nature of these tensors is found to be closely related to the shear and twist of the 
congruence. 

2. §pin coefficients 
We define a tetrad of null vectors, I,, n,, mu, Eu as in I. The components of 1, 

and n, being real, and those of mu complex. The most general transformations on 
the tetrad, subject only to the restriction that the direction of 1, remains unchanged, 
are the null rotations about I,: 

I ,  = AVu‘ n, = X-2(nu’+Jm,’+$Eu’ +$JZ,’) 

mu = e2iq (mu‘+$47 
where the parameters h and 77 are real, and t,!~ is complex. The tetrad may be defined 
in terms of two basis spinors t A  and x A  such that f A x B - x A [ *  = aAB, and the cor- 
responding spinor transformations are 

( A  = h e - q , ,  x A  = X-lein(XA’ + $ ( A ’ ) .  
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Under these transformations the spin coefficients transform as follows : 

K = l,;Bmalfi - - h4e2inK‘ 

p = l,;BmafiB = X”p’ + $ K ’ )  

a = l,:Rmamfi = A2e4in( 0’ + # K ’ )  

r = la;4manB = eZin(T’ + $p‘ +$a’ + $ 4 ~ ’ )  
E = *(Z,lana+fi,;Bma)l~ = A2{~’+$u’ + [ln(Xei*)],vl’b) 
U = $(la:ona+fii,,ama)Gfi = e - ~ i n ~ ~ ’ + ~ ~ ’ + $ p ’ + ~ u ’ +  [ln(hei~)],,(fi”+$Z’V)) 
p = $ ( I ,  ;pa + fi, ;fima)mo = eziV{/Q’ + $5’ + $0’ + $6.’ + [ln(Ae‘~>],~(m’~ + #Z’,)) 
y = $(I, + E,  lBma)nfi = Ae2{y’ + $ x ’  + $6’ + $$E’ + $(r’ + #p’ i $U’ + # $ K ’ )  

+ [ln(Aein)],v(n’v +$m’, + $ E ’ ~  + $$P)}, 
If I, is the tangent vector of a null geodesic congruence then Zcj,l,l;alff = 0 and 

the necessary and sufficient condition for 1, to be geodesic is K = 0. This condition 
is invariant with respect to null rotations of the tetrad, and in this case the coefficients 
p, U and E are invariant with respect to # rotations. 

If 1, is geodetic, it is possible to introduce a null frame i,, g,, T ,  such that 

L?L;np = 0 ?a,;,,la = 0 ?$,p = 0 

and the corresponding spin coefficients have geometrical interpretations (see Jordan 
et al. 1961), for example, is the 
‘expansion’ and ~y the ‘twist’. 

is the ‘shear’, and if we put p = t+iLj, then 

3. Neutrino field conditions 
With the notation of I a given space-time will admit a two-component neutrino 

field if a null tetrad (l,, n,, m,, f i J  can be constructed satisfying the neutrino equation 

S,:, = H, 

&,+ElLY = 0 
and the gravitational equations 

where S,, is the self dual tensor 2Zr,mvl and 

E,, = 2i{H(,fi,) - a(,mV) + P(,l,)) 

where I-€, = 
with this tetrad 

and P, = fiam,;,. I n  terms of the spin coefficients associated 

H, = 71, + un, - pm, - a%, 

and (3.1) is equivalent to 
E = p  p = 7 .  

Using this latter result and putting p = B+iw, Egv may be expressed in the form 

Euv = 2{ - Al,l,+ Bl(,m,) + Blt,fi,) + 2wl(,n,) + 2wm(,G,,) 

+ iam,m,- iafi,fiv + iKn(,fi,) - i+,mVJ 

where A = i(y-7) and B = i(u-27). 
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Positive energy density is ensured by the condition 

E,yv,vv > 0 

where Vu is an arbitrary real time-like vector. Taking this in the form 

V, = 1, + bn, - cnz, - E f i ,  b > lcI2 

it follows from (3 .2)  that 

b( - Ab+ 2w)  + 2 / c [  2w + i(E2E-c2a) +b(EB+cB) + i(cK- E )  > 0. ( 3  - 3 )  

Considering Vu with c = 0, we have either w 2 0, A < 0 or w > 0, A < 0. Now 
for vectors with c # 0, put b = ~ 1 ~ 1 ~  and divide by ;cl2, Then (3.3) is satisfied if 

v( -v lc12A+2w)+2w-2!a[ -2vIcI !BI - 2 l ~ l / l c ]  > 0 (3 .4 )  
for arbitrary values of the independent quantities v and Ic1, subject only to the condi- 
tion v > 1. This immediately implies that K = 0. Thus a neutrino field with positive 
energy density is necessarily geodesic, with the ray vector defining the direction of 
the neutrino flux. The three quantities 8, w and la1 are then proportional to f ,  
and Igl-that is, to the expansion, twist and shear. 

I t  may be verified that the neutrino equations and the expression for Euv are 
invariant with respect to +transformations of the null tetrad. This fact is immediately 
obvious from the corresponding spinor equations : 

uaABfBIa = 0 and E,, = 2i(a(,AgfAI,,Ei - o ~ ~ ~ & ~ ~ ) ( ~ } .  

Hence, given the neutrino flux vector I,, we can introduce the transformation 
m, = m,’+t,hl,’ and choose # in any convenient way. Now, under this transforma- 
tion, 

- iB = a-27 = - iBf+4iw$-%# 

and hence $ may be chosen to make B’ zero unless the twist w and the shear ,a( are 
simultaneously zero, or w = tial. However, in the cases where cr = 0 = w ,  or 
w = $iul, (3 .4)  requires that 

which are satisfied for all v > 1 and for all lcI only if B = 0, since we have already 
shown that A cannot be positive. Equation (3.4),  however, is slightly more restrictive 
than (3.3),  but all the above results are implied by (3 .3)  except for the very special 
case where 

A #  0 w = # 0 uB2 = ilol]B/2. 

In  this case (3 .3)  implies IB,2+4Alu! < 0 so that B is not necessarily zero. 

field can in general be put in the form 
Thus for positive energy density the energy-momentum tensor for the neutrino 

E,, = -2Al,lv+2w(l,n,+n,l,$m,r7i,+r7ium,)+2i~m,m,-2ior7ii,,fi,. (3 .5 )  

Returning now to the general case w # 0, (3.4) becomes 

- v b A + Z ( v +  l)w-21crl > 0 
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which implies the condition that 
w B $(u j .  

This immediately implies that if a neutrino field with positive energy density is 
twist-free it must also be shear-free.t And so if a neutrino field is twist-free it must 
necessarily be a 'pure radiation field' discussed in I and defined by 

E,, = -2Al,l,, A < 0. ( 3 . 7 )  
Thus the condition that a given space-time shall admit a neutrino field with posi- 

tive energy density is that there shall exist a tetrad such that the negative Ricci 
tensor is of the form ( 3 . 5 ) ,  the null frame being such that the associated spin coeffi- 
cients have the restrictions 

K = O  E = p  p = 7  % = 27 

w 2 41.1 
A particular class of neutrino fields, which requires that H ,  = 0, has been des- 

cribed by Penney (1965). This restriction requires the conditions U = 0, K = 0, 
e = 0, w = 0 and r = 0 and the neutrino conditions require further that there 
exists a null tetrad whose spin coefficients a, /3 and E are also zero. Then for this 
tetrad Z a i D  is of the form 

The  further restriction which puts la;4 = 0 gives the 'restricted class' of neutrinos 
which is discussed by Inomata and McKinley (1965). 

i(y-g) < 0. 

& ; D  = (Y+P)1"&.  

4. Eigenvalues and eigenvectors 

such that 

For the neutrino field with positive energy density E," is of the form (3.5) and its 
characteristic equation implies that, in general, it possesses three distinct real 
eigenvalues 

The  eigenvalues h and the eigenvectors V, of the energy-momentum tensor are 

E,"Va AV,. 

A, = A, = 2w A, = -2w+2luI  A4 = - 2 w - 2 1 ~ 1 .  (4 .1)  

We have : 
E,"l, = 2w1, 

EMamU = - 2wm, + 2iu%, 
E,%, = 2wn, - 2A1,. 

Thus it is obvious that there exists a null eigenvector 

Vu(1) = 1, 
corresponding to the double eigenvalue A = 2w. There also exist two space-like 
eigenvectors corresponding to A3 and A4: 

V,(3) = ( l - i ) d ( 8 ) m f i + ( l + i ) i / ( u ) % i L  
V&(4) = (1 + i)d(d)m, + (1 - i)d(u)%,. 

t Similar results have been obtained independently by J. Wainwright in a forthcoming 
paper entitled Geometric properties of neutrino fields in citraed space-time. 
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In  the case where U = 0, w # 0 we have a second repeated eigenvalue A = - 2w.  
However, there still exist two real space-like eigenvectors given by 

V,(3) = mu+*, 
V,(4) = i(m, - 6,). 

A fourth eigenvector may also exist corresponding to the repeated eigenvalue 
A = 2w. This must have the form 

V,(2) = Yn, + Zm, + Zc,, 
and must satisfy the conditions 

,4Y = 0 2 w Z  = - i d .  

If A = 0, then we can take 2 = 0 and the fourth eigenvector is 

V,(2) = n,. 

I n  this case we have two null eigenvectors corresponding to A = 2w. These are 
equivalent to a time-like and a space-like eigenvector. 

If A # 0, then (4.2) implies that a fourth eigenvector may exist corresponding 
to Y = 0, Z # 0, provided 

w = $\U] .  

This case is just permitted by (3.6), but we can see from (4.1) that this corresponds 
to a thrice repeated eigenvalue 

A, = 11, = .I, = 2 w  A 4 =  - 6 w  

and (4.2) implies that T7,(2) = V,(3). 
Hence we may conclude that if w # 0 there exist only three eigenvectors, one 

null and two space-like, except in the case where A = 0 in which there exists a 
second null eigenvector. 

Now consider the case in which U and w are both zero, which is the case of the 
pure radiation field. The  expression for E," is now given by (3.7) and we can see 
that its eigenvalues are all zero. It possesses three eigenvectors one null and two 
space-like : 

V J l )  = 4 4  

V,(2) = m,+Fiii, 
V,(3) = i(wzii,-fiP), 

The  results of this paragraph may be summarized as follows. If a space-time 
admits a combined neutrino-gravitational field with positive energy density the 
neutrino flux vector 1, is an eigenvector of the Ricci tensor and defines a null geodesic 
congruence. The  congruence will have non-zero twist and shear if lfi corresponds 
to a double eigenvalue of the Ricci tensor and the tensor has also two space-like 
eigenvectors corresponding to the remaining two distinct eigenvalues. The con- 
gruence will have zero shear and non-zero twist if the Ricci tensor possesses two 
pairs of double eigenvalues. Finally, the neutrino congruence must be shear-free 
if it is twist-free and the Ricci tensor must then have the form R,, = 2Alul,,. 

These results may also be expressed in terms of Plebanski's (1964) classification 
of the traceless Ricci tensor. In  figure 1 we show the different types of Ricci tensor 
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distinguished by Plebanski which can be interpreted as describing a neutrino field 
with positive energy density. We give this using Plebanski's notation. The  eigen- 
values are described in the square brackets. The symbol T, N or S is used to repre- 
sent an eigenvalue which contains a time-like vector, no time-like vector but a null 
vector, or only space-like vectors. The numbers sometimes placed before these 

Four eigenvectors , Three eigenvectors 1 Tko null,two space-like One nul l , two space like 

W Z O  
U#O 

O#O 
U =  0 

Figure 1. Plebanski classification of the neutrino field. 

denote repeated eigenvalues. The numbers outside the square brackets are the indices 
of nil-potency in the same order in which the eigenvalues are given. Where there is 
no ambiguity the sum of the indices of nil-potency is given. The arrows indicate 
degenerations obtained by restrictions on the values of the parameters A, w and D. 

The figure illustrates the fact that, for different values of the parameters, the energy- 
momentum tensor of the neutrino field with positive energy density can be divided 
into seven distinct classes. The exceptional case referred to in $ 3  in which B Z 0 
is of type [3N - SI3 or possibly [3T - SI,. 
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